Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity.

نویسندگان

  • Mikhail V Blagosklonny
  • Robert Robey
  • Dan L Sackett
  • Litong Du
  • Frank Traganos
  • Zbigniew Darzynkiewicz
  • Tito Fojo
  • Susan E Bates
چکیده

By preventing deacetylation of histones, histone deacetylase inhibitors (HDIs) transcriptionally induce p21. Here we show that the HDIs sodium butyrate (Bu), trichostatin A (TSA) and depsipeptide (FR901228) all induced p21, but only TSA and FR901228 caused mitotic arrest (in addition to arrest in G1 and G2). The ability to cause mitotic arrest correlated with the higher cytotoxicity of these compounds. Although causing mitotic arrest, TSA and FR901228 (unlike paclitaxel) did not affect tubulin polymerization. Unlike FR9012208, TSA caused acetylation of tubulin at lysine 40; both soluble tubulin and microtubules were acetylated. Whereas the induction of p21 reached a maximum by 8 h, tubulin was maximally acetylated after only 1 h of TSA treatment. Tubulin acetylation was detectable after treatment with 12-25 ng/ml TSA although acetylation plateaued at 50 ng/ml TSA, coinciding with G2-M arrest, appearance of cells with a sub-2N DNA content, poly(ADP-ribose) polymerase cleavage, and rapid cell death. We conclude that HDIs have differential effects on non-histone deacetylases and that rapid acetylation of tubulin caused by TSA is a marker of nontranscriptional effects of TSA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors.

Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostati...

متن کامل

Histone Deacetylase Inhibitors Activate p21 Expression via ATM

Histone deacetylase (HDAC) inhibitors are known to induce expression of genes such as p21, thereby, leading to cell cycle arrest. In this work, we show that p21 induction by HDAC inhibitors (depsipeptide and trichostatin A) is defective in Ataxia telangiectasia (AT) cells but normal in matched wild-type (WT) cells (human diploid fibroblasts). To verify the role of ATM in this effect, we show th...

متن کامل

O-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation.

Histone deacetylase 1 (HDAC1) is an epigenetic enzyme that regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating histone substrates. Aberrant expression of HDAC1 is implicated in multiple diseases, including cancer. As a consequence, HDAC inhibitors have emerged as effective anti-cancer drugs. HDAC inhibitor-induced G0/G1 cell-cycle arrest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 1 11  شماره 

صفحات  -

تاریخ انتشار 2002